

Introduction to Computer Science with MakeCode for Minecraft

Lesson 2: Events

In this lesson, we will learn about events and event handlers, which are important concepts in

computer science and can be found in all programming lang uages. We will start with a fun

unplugged activity that demonstrates cause and effect, and how events trigger actions in the

real world. Next, weõll get hands-on with MakeCode in Minecraft, and finally, weõll challenge you

to create your own MakeCode projects that use events to activate different parts of your

program.

Events

An "event" in computer science is an action or occurrence that is detected by a computer. For

example, when someone clicks the button on their mouse, it generates a òmouse click eventó for

the computer. In real life, there are also events that may be associated with a following action,

like Cause-and-Effect. Here are some examples:

Event Action

It starts raining Č Open umbrella

The bell rings Č Students go to class

The Power button is pressed Č Computer turns on

Mouse button is clicked Č Open application

Can you think of some other Events and possible subsequent actions?

In programming, an event handler is a part of your program that runs when specific events

happen (it òhandlesó the event). In MakeCode, these event handler blocks look like a square

with a gap in the middle, and usually start with the word òonó:

Unpl ugged Activity : Events and Handlers

Teacher Note: An unplugged activity is an activity that takes place away from the computer,

i.e., òunpluggedó from a device. We usually try to introduce new concepts in a fun way that

gets kids up and moving, often reacting and interacting with other students face -to-face

while playing a game or completing a challenge. Unplugged activities allow kids to practice

concepts away from the computer so that when they move to activities on the computer, they

have already walked through and thought about the concept on their own.

Objective:

To reinforce the event-driven programming model by acting out events and the resulting

actions encapsulated by an event handler.

Overview:

Identify one-third of the class to be the òEventsó, and the rest of the class will be the òEvent

Handlersó

For the òEventó students, have them come up with an event to model. Students should invent

their own events, but some examples could be:

¶ Door opens

¶ Lights turn off

¶ Clap hands twice

¶ Both hands raised

Once theyõve decided on their event, students should write down their event twice, on 2

different index cards. These cards should be shuffled and passed out to the òEvent Handleró

students.

Once the òEvent Handleró students have received their assigned events, they should come up

with some sort of action to take based on this event. Students should invent their own actions,

but some examples could be:

¶ Door opens Ą Walk outside

¶ Lights turn off Ą Go to sleep

¶ Clap hands twice Ą Stomp feet 3 times

¶ Both hands raised Ą Say òTouchdown!ó

Line up the òEventó students at the front of the classroom, and have each one perform their

event. When the event is performed, the associated òEvent Handleró students for that given

event should also perform the subsequent action.

Once all the event and event handlers have been called, you can randomly call on different

òEventó students to perform, and trigger different event handlers ð you can speed this up and

see if the students react quickly to their assigned event.

Materials:

Ɓ Index cards & pens/pencils

Rules:

Ɓ Unless instructed otherwise, students do not speak or make noise during this activity

unless it is part of their event or action.

Ɓ Students should be aware of the activities of the other people in the classroom, but

cannot tell other students what to do.

Reflections:

Have a discussion about how that felt/worked:

Ɓ Were there any programming errors or bugs in the system? Did a student miss handling

an event?

Ɓ What was it like to keep track of the different events going on?

Ɓ Sometimes there was more than 1 event handler for a given eventê how does that work?

Ɓ Could there be 1 event handler for multiple events? (yes)

Ɓ Could an event handler also trigger an event? (yes) If so, how would that work? (Lights

turn off Ą Go to sleep Ą Teacher says òWake up!ó)

Tips:

Ɓ SAFETY FIRST! Students, especially younger ones, can get quite silly with this and while it

is meant to be fun and even funny, safety first!

Notes:

Computer programming connection: Computer programs are a set of instructions telling the

computer how to process input and deliver output. An important part of programming is telling

the computer WHEN to perform a certain task. Events are a way to trigger certain instructions.

Activity: Yellow Brick Road

Teacher Note: A òbirdhouse activityó is named after the birdhouses many of us made as our

first project in wood shop class. Everybody in class follows the same instructions to make the

same thing. Once everybody comes out with a birdhouse that looks halfway decent, you know

they have all had at least an introduction to the concepts through an unplugged activity, and

practiced new skills by making the birdhouse. We like to move from unplugged activities to

birdhouses in preparation for more creative, open-ended projects once we know they have

demonstrated the skills at least once. Just donõt stop after the birdhouse! Although it is

easiest to assess skills with a birdhouse, be sure to give kids opportunities to apply those skills

to meet more open -ended challenges.

The òOn player walkó block is an event handler that looks for a

specific action by the player. Its pull-down menu lists all sorts of

actions a player might perform at any given time, such as walking,

jumping, attempting to swim in lava, and more.

You can configure this event handler to cause something to happen when a player is walking.

For example, you can leave flowers everywhere you walk!

Steps:

1. From the Player Toolbox drawer, drag the On player walk block into the coding Workspace.

2. From the Blocks Toolbox drawer, drag the Place at block under the On player walk block

until you hear and see it snap into place.

3. Using the drop-down menu in the Place at block, select a dandelion (yellow flower).

Now, wherever you walk in the game, you will leave a trail of dandelions! Try it out in the game

by using the ôWõ key on the keyboard to have your Player walk forward in a Minecraft world.

Then, look behind you ð you should see a trail of flowers!

Teacher Note: We will be exploring the coo rdinate system in more detail in the next lesson.

For now, itõs enough to know that the 3 coordinates (X, Y, Z) represent different directions in

the Minecraft game:

¶ X coordinate ð East / West

¶ Y coordinate ð Up / Down

¶ Z coordinate ð North / South

Notice that we used the coordinates (~0 ~0 ~0) in our Place block. ~0 in the middle coordinate

represents the relative coordinate for ground level. Suppose we wanted to leave a golden path

behind you, so that a òyellow brick roadó were created wherever you walked? We can do that

with the same Place at block, only this time weõll leave (of course) solid gold blocks.

Watch what happens:

The right idea, but not exactly what we are going for. We are actually leaving a gold wall behind

us, which is rather inconvenient. How might we sink those blocks into the ground so that they

form a yellow brick road?

Letõs modify the Y coordinate by subtracting one so that the bottoms of the bricks are one level

down.

Now, letõs see what happens:

Much better! As an extension, try making it a proper yellow brick road, at least three bricks

wide, so you and your friends can walk side by side. Hint: use a different block from the Blocks

menu!

Solution:

Activity: Sing a Song of Sixpence

òSing a song of sixpence,

A pocket full of rye.

Four and twenty blackbirds,

Baked in a pie.ó ð English Nursery Rhyme

In this activity, students will take inspiration from this old English nursery rhyme to recreate this

in Minecraft. But we shall use parrots instead of blackbirds, and cake instead of a pie!

Steps:

1. From the Blocks Toolbox drawer, drag the On broken block onto the coding Workspace.

This will be our event handler.

2. Using the drop-down menu, select the ôcakeõ item

3. From the Mobs Toolbox drawer, drag a Spawn animal block under the On broken block until

you hear it snap into place.

https://en.wikipedia.org/wiki/Sing_a_Song_of_Sixpence

4. Using the drop-down menu in the Spawn animal block, select a Parrot

5. We want to spawn the parrots above our head, so in the Spawn animal block, change the Y

coordinate to 1

This will just spawn 1 parrot above our head, so letõs use a Repeat loop to spawn 24 parrots.

6. From the Loops Toolbox drawer, drag a Repeat loop under the On broken block, and around

our Spawn animal block.

7. In the Repeat loop, type in the number 24

To run this in the game, add a cake to your Player inventory (press ôEõ to open your inventory),

place a cake on the ground by selecting it in your toolbar and right -clicking somewhere on the

ground. Then hit it using the left mouse button to destroy it ð you should see a flock of parrots

appear!

Shared Program: https://makecode.com/_0ji3UvTDg4Ds

Activity: Last Stand at the Alamo

In this activity, we will recreate the experience of being overrun by hordes of zombies. We will

also see the effect of exponential growth: every time you kill a zombie, two more spring up in its

place. What does that feel like? Letõs find out!

To start out with, make sure you are in a safe and/or easily defensible location. Jungle trees work

well, as do castle turrets and even a fenced-in corral (where you are on the inside). Alternately, if

you are in a flat world, you can just run free, shooting zombies as you go. Itõs a no-win situation

anyway, so you might as well have some fun while you are in it.

The event handler that we will be using is òOn monster killedó to trigger new zombies spawning

when one is killed.

Steps:

1. From the Mobs Toolbox drawer, drag an On killed block into the coding Workspace

https://makecode.com/_0ji3UvTDg4Ds

2. From the Mobs Toolbox drawer, drag a Monster block into the On killed block replacing the

default animal block

3. Using the drop-down menu in the Monster block, select the ôzombieõ spawn egg

Now, when a zombie is killed, we will spawn two new ones at a random location near the player.

4. From the Mobs Toolbox drawer, drag a Spawn animal block under the On killed event

handler block

5. From the Mobs Toolbox drawer, drag a Monster block into the Spawn block

6. Using the drop-down menu in the Monster block, select the ôzombieõ spawn egg

7. We want to spawn 2 zombies for every one we kill, so from the Loops Toolbox drawer, drag

a Repeat loop under the On kill block and around our Spawn block

8. In the Repeat loop, type in the number 2

Now we need to tell Minecraft where to spawn the Zombie s. By default, notice that the relative

coordinates are set to your Playerõs current location (~0 ~0 ~0) . Spawning two zombies right on

top of you isnõt a great idea, so letõs make them show up just a little farther away at random

locations.

9. From the Positions Toolbox drawer, drag a Pick random position block and drop into the

Spawn block replacing the default coordinates

The two sets of coordinates in the Pick random position block describe opposite corners of a

box within which zombies will spawn at random locations. Letõs choose a box 10 blocks around

your Player, which should create an area of about 400 square blocks centered on your location.

10. In the Pick random position block, type the from coordinates as (~10 ~0 ~10), and the to

coordinates as (~-10 ~0 ~ -10)

JavaScript:

mobs. onMobKilled (mobs. monster (MonsterMob. Zombie),

function () {

 for (let i = 0; i < 2; i ++) {

 mobs. spawn(mobs. monster (MonsterMob. Zombie),

positions . random(

 positions . create (10, 0, 10),

 positions . create (- 10, 0, - 10)

))

 }

})

Shared Program: https://makecode.com/_VseXqc2Vjbv9

To start the fun, open a Minecraft world in Creative mode. Then open your inventory and equip

yourself with a weapon (ideally a ranged weapon like a bow), and then give yourself a Zombie

spawn egg (you can use the search feature in your inventory).

Next, change your game mode to Survival either through your Settings menu, or by typing this

command into the chat window: ò/gamemode só. Tip ð make sure the Difficulty level of your

game is not set to Peaceful ð the zombies wonõt attack. Finally, get behind a barricade, drop the

Zombie spawn egg, and let the fun begin!

https://makecode.com/_VseXqc2Vjbv9

Independent Project

Teacher Note: Open-ended, creative projects are opportunities to apply the concepts and

skills students have developed to solve a problem or fill a need. In Minecraft, there are all

sorts of problems to solve: How can you keep your cows from running away? How can you

create a renewable water source? How can you get back to the surface after falling into a

ravine? Projects allow kids to explore problems that are meaningful to them -- and to use

MakeCode to design original, automated solutions to many of the problems they face in their

everyday Minecraft lives. It is important to give kids opportunities to create original projects

to demonstrate that they can apply their MakeCode skills in new ways, and to exercise their

creativity.

Remember that we learned in this section that events make things happen during the game. You

will need to use event handler blocks to trigger different actions or results. In this project, your

challenge is to come up with a simple MakeCode for Minecraft project that uses one or more of

the following event handler blocks:

Event Handler Blocks

¶ On chat command

¶ On player died

¶ On player walk/run/jump/swim/ etc.

¶ On arrow shot

¶ On block broken

¶ On block placed

¶ On animal killed

¶ On monster killed

For some of these blocks, you have many choices about the type of block, action, or animal

affected.

Sample Projects:

1. Kaleidoscope Build

In this project, every time you place a cobblestone block, three more are placed

symmetrically relative to your location.

X O
X = block placed

O = new blocks
O O

2. Walk on Water

When you are crossing a lake or a river, make blocks of ice or glass appear under your feet

so that you are literally walking on water.

3. God of Weather

