
 

 

Introduction to Computer Science with MakeCode for Minecraft 

Lesson 7: Functions 

Often in programming, there are tasks or procedures that are used frequently within the same 

program. Rather than rewrite the lines of code that perform a particular task each time you need 

it, you can group that set of instructions together as a function. Grouping frequently used 

instructions as a function makes your code more efficient. You can write the set of instructions 

once as a function and from then on simply ‘call’ the function from inside your program 

whenever you need that task done. A function is usually given a name that describes the task it 

will perform when called, making your code easier to read, too!  

 

Example: Writing Your Name 

Consider this example: As a student you are probably asked several times a day to write your 

name, on a paper, or a form, or on a sign-up sheet.  Writing your name is a function that you do 

without thinking about it very much, yet the task is actually made up of a number of smaller 

steps. Let’s take a look at what those steps would be for a person named ‘Mary’. 

The function could be called ‘WriteMyName’. 

 

The list of steps or lines of code performed when WriteMyName is called for Mary would be: 

● Write a capital ‘M’. 

● Just to the right of the previous letter, write a lowercase ‘a’. 

● Just to the right of the previous letter, write a lowercase ‘r’. 

● Just to the right of the previous letter, write a lowercase ‘y’. 

 

Whenever Mary needs to write her name, she calls the function ‘WriteMyName’ and that set of 

instructions is carried out. 

 

Note that the lines of pseudocode in this function have within them even smaller functions. 

When you were learning to write your name, you needed to be able to perform the set of 

instructions for writing each letter first!  



 

 

 

WriteCapitalM, WriteLowercaseA, WriteLowercaseR, WriteLowercaseY are themselves functions 

that need to be called in order to complete the task. What sets of instructions make up each of 

these smaller functions? 

 

Unplugged Activity:  PB & J 

 

Here’s another example of how functions might be used  to define a complex task.  Imagine that 

a parent makes you lunch every day – wouldn’t it be nice to delegate this task to a computer?  

Ask students to imagine a robot that would make them a peanut butter and jelly sandwich 

(PB&J) every day. What are the steps involved in making a peanut butter and jelly sandwich? 

Can they write a function that includes all the steps necessary to make a yummy sandwich? 

This is a fun activity to do in the classroom.  

 

Show the students, but do not comment on the materials that you will be using for this activity. 

● Materials: 

o A jar of peanut butter** (closed) 

o A jar of jelly (closed) 

o A bag of sliced bread (closed) 

o A plate 

o A knife 

o A paper towel 

 

**Note: Check for allergies to peanuts. You can always substitute butter or cream cheese for the 

peanut butter.  

 

Write pseudocode for the making of a PB&J sandwich: 

● Have students work in pairs to write pseudocode (English language instructions) for 

making a peanut butter and jelly sandwich  

 



 

 

Execute the instructions: 

● You, the teacher, will pretend you are the robot. 

● Collect all the pseudocode instructions and chose one to perform. The one with the least 

number of steps is usually a good one to start with, as they will have made some 

assumptions about what you, the robot, know how to do. 

● Follow the instructions as written. This is your chance to have some fun, usually by 

following their exact instructions without using ‘what you know they meant’. 

● For example:  

o The first step is often ‘Open the bread.’ Feel free to just rip open the bag of bread 

as their instructions did not say anything about untying the knot or unclipping 

the bag opening. 

o If the instruction is ‘Put two slices of bread on the plate.’, you can put one slice on 

top of the other since that instruction did not specify how to place the slices. 

o If their next instruction is ‘Put peanut butter on one slice of bread’, you can put 

the whole peanut butter jar on the bread slice, since they gave no instructions 

about opening the jar first.  

o If an instruction tells you to do something you simply cannot, like ‘Use knife to 

scoop out jelly’ yet the jelly jar isn’t even open, you can just report a ‘runtime 

error’ and stop the program. 

● By the time you have gone through a few steps, or run a couple of programs to the point 

where they produce an error, the students have gotten the idea that they have left out 

important steps and also made assumptions about what functions you already know how 

to perform and are asking for their papers back so they can re-write their pseudocode. 

 

Rewrite pseudocode into functions: 

● Give them the chance to re-write their ‘MakePB&J’ functions and let them know some 

smaller functions you already know how to perform.  For example: If they write ‘Open 

jelly jar’ or ‘Take lid off of jelly jar’, tell them you already know the ‘OpenJar’ function, so 

they do not need to write it, ‘Grasp lid tightly. Twist lid to the left…’ 

● Students will then start asking, ‘Do you know how to..?’, checking to see what other 

functions you already know. 

● Perform some of their revised functions. There are usually students who will happily 

consume the results! 

 

Example: 

Main Program Function Helper Functions 

MakePB&J 

● ‘Open’ bread bag 

Open 



 

 

● Remove 2 slices of bread 

● Place each slice face-down side by side 

on the plate 

● ‘OpenJar’ Peanut butter 

● ‘OpenJar’ Jelly 

● Pick up knife 

● ‘Spread’ Peanut butter on one slice of 

bread 

● ‘Spread’ Jelly on the other slice of 

bread 

● Put knife down 

● Pick up one slice of bread and lay face-

down on the other slice of bread 

● Wrap the bread in a paper towel 

● Grasp the end of the bag with the 

opening 

● Unclip the plastic holder 

● Untwist the wrapping 

● Reach in 

OpenJar 

● Put one hand on the top lid of the jar, 

and grasp tightly 

● Put the other hand around the base of 

the jar 

● Repeat until lid is loose: Twist your top 

hand counter-clockwise 

● Remove the lid of the jar 

Spread 

● With a knife, reach into the Jar 

● Scoop out contents 

● Move knife backwards and forwards 

over bread until knife is clean 

● Repeat previous 3 steps until bread is 

completely covered  

 

Challenge: (Can be given as homework.) 

● Have each student choose a ‘simple’ task like tying a shoe or brushing their teeth and 

write in pseudocode a function to perform that task.  

● Along with their pseudocode, each student should bring in whatever props are necessary 

to perform their function. 

● Select a student’s pseudocode and give that function and the props to another student 

to perform.  

● After watching you the day before, the students are primed to follow the instructions as 

written! 

 

These exercises help students realize the value of functions as a way to organize their programs, 

and also how each function can itself include ‘calls’ to smaller functions.  

 

Additional Challenge: A Cleaning Robot 



 

 

 

● How might you program a robot to clean the house?  

● Are there tasks that are common for all rooms of the house? (Vacuuming, dusting) 

● Are there tasks that are specific to certain rooms in the house? (Clean the toilet, make 

the bed) 

● Which tasks can you assign to functions? (pickUpStuff, dust, sweep, vacuum)  

● How might you break up the overall task of cleaning  a house into specific functions? 

(cleanTheKitchen, cleanTheLivingRoom, cleanBathrooms, etc.) 

 

Have students write two different examples for cleaning  a room in the house using pseudocode. 

 

Activity:  Leap of Faith Mini-Game 

Students love to create mini-games in Minecraft for their friends to play.  In this activity, we’re 

going to create a simple mini-game that creates a tiny pool of water, then transports the player 

to a little platform 64 blocks high where the only way down is to jump and land in the pool of 

water!  If you jump, and miss the pool of water, you lose.  Luckily, we’ll build this mini-game in 

MakeCode using functions, so you can try again and again. 

 

Our mini-game will have three parts:  

1. Creating the pool of water 

2. Creating the platform 

3. Teleporting the player to the top of the platform 

 

Steps: 

1. Create a new MakeCode project called “Leap” 

2. Click the Advanced tab on the Toolbox to display more Toolbox categories 

3. In the Functions Toolbox drawer, click on ‘Make a Function’ button 



 

 

 

4. Name this function pool, and click Ok 

 

5. Repeat steps 3 and 4 to create two more functions named: platform and teleport 

6. From the Player Toolbox drawer, drag an On chat command block onto the Workspace 

7. Rename this On chat command to “play” 

8. From the Functions Toolbox drawer, drag the three blocks: Call function pool, Call function 

platform, Call function teleport into the On chat command block 



 

 

 

This will be our main program to start our mini-game.  Now, let’s build out these three 

functions. 

 

The first thing we’ll do is create a pool of water.  

1. From the Blocks Toolbox drawer, drag a Fill with block into the Function pool block. The Fill 

with block will fill a three-dimensional box from the first set of coordinates, to the second set 

of coordinates. 

2. Using the drop-down menu in the Fill with block, select a block of water 

3. In the Fill with block, type the following values for the first set of from coordinates: (0, -1, 0) 

4. In the Fill with block, type the following values for the second set of to coordinates: (2, -3, 2) 

 

This will make a 2 x 2 x 2 pool of water that is located below our player’s feet. The Fill block is set 

to replace by default, which means that the existing blocks will be replaced with water. 

 

Once the pool is built, a platform will need to be built high in the sky. There’s no need for a 

tower, or a ladder -- there’s only one way down!  We want to create a wooden platform that is 

slightly offset from the pool below, so that you have at least a chance of jumping off the right 

side of the platform and landing in the pool. 

 

https://minecraft.makecode.com/reference/blocks/fill
https://minecraft.makecode.com/reference/blocks/fill


 

 

1. From the Blocks Toolbox drawer, drag another Fill with block into the Function platform 

block 

2. Using the drop-down menu in the Fill with block, select a Wood Slab 

3. In the Fill with block, type the following values for the first set of from coordinates: (1, 64, 1) 

4. In the Fill with block, type the following values for the second set of to coordinates: (3, 64, 3) 

 

 

The last step is to teleport the player to a spot just above the middle of the platform. 

5. From the Player Toolbox drawer, drag out a Teleport to block into the Function teleport 

6. In the Teleport to block, type the following values for the coordinates: (2, 65, 2)  

 

 

Now to try out your mini-game!   

In a Minecraft world, set the game mode to Survival, then find a spot of open ground, and 

execute your mini-game by typing ‘play’ in the chat window.  Then take a Leap of Faith!  

Remember that when you are up on the platform, holding down the shift key while moving 

around will keep you from falling off while you look for a good spot to jump.   Have students try 

playing each other’s games. 



 

 

 

It’s a long way down! 

 

Activity: Tree Hunter 

You’ll recall in the Conditionals Lesson, we coded a tree chopping Agent that works well for 

individual trees, but it requires an intelligent player to stand at the base of a tree and teleport 

the Agent to the tree each time. Imagine if you could turn a more intelligent Agent loose in a 

grove of trees and have it find trees and chop them down automatically, without involving the 

player. What would be involved? 

 

When we see a grove of trees, it’s always easy to see the next tree to chop down. However, the 

Agent can only inspect blocks that are immediately forward, to the left, or to the right of its 

current position. To imagine how to code an Intelligent Agent, picture yourself working your 

way through a grove of trees, blindfolded. How might you proceed? 

 



 

 

One way to solve this problem is to divide the grove into a grid and proceed through the grid 

row by row. It’s slow, but you will eventually inspect every square on the grid. To make this a 

little bit more efficient, by reducing the number of passes we will make, we’ll test forward, left, 

and right at every step. 

 

 

We also need to plan for the changing terrain. Trees rarely grow on a flat plain; there are usually 

numerous changes in elevation and we will want to make sure the Agent follows the natural 

ground terrain so that it always starts at the base of each tree. 

 

Finally, we will need an actual tree chopping program. We can use the one we created in the 

Conditionals Lesson.  Because this is a fairly complex program, let’s break it down into the 

different parts: 

• Main RunChopper Program 

• Searching for Trees (search function) 

• Following the Terrain (follow function) 

• Turning around at the end of a row (turn function) 

• Chopping Trees (chop function) 

 

Steps: 

1. Create a new MakeCode program called ‘Tree Hunter’ 

2. Rename the On chat command block to “runchopper” 



 

 

To determine the size of the area to search, let’s attach a number as a parameter to our 

RunChopper command block that will represent the length of one side of the square search 

area.  For example, if we call “runchopper 25” we want our Agent to search within a 25 x 25 

block square area, which should encompass a good number of trees. 

3. Click the plus sign (+) in the On chat command block to add the num1 parameter to our 

block 

 

 

Let’s first create the 4 functions that will make up our program.  

4. Click the Advanced tab on the Toolbox to display the additional Toolbox categories 

5. From the Functions Toolbox drawer, click the ‘Make a Function’ button 4 times 

6. Name the functions: search, follow, turn, and chop 

 

 

Let’s start with the chop function, since we’ve already completed this code in the Conditionals 

Lesson. 

7. Open the Chopper project you created previously in MakeCode 

8. Click the JavaScript button to see your program in the JavaScript editor 

9. Select all the code (Ctrl-A) and copy it to your clipboard (Ctrl-C) 



 

 

 

10. Click the Home button at the top of the screen to get back to the MakeCode home page 

11. Open back up the Tree Hunter project in MakeCode 

12. Click the JavaScript button to see your program in the JavaScript editor 

13. Place your cursor in the last line, and paste the code you copied (Ctrl-V) 

14. Click the Blocks button to get back to the Block editor.  You should see the code you wrote 

for the Chopper project here. 

 

15. Drag all the blocks from under the On chat command “chop” to the Function chop 

16. Delete the On chat command “chop” 



 

 

 

 

Moving on to the search function, which will have the Agent check to see if there are any trees 

around it.  The Agent will check to the right, in front, and to the left for wood blocks indicating a 

tree.  If it finds a wood block, it will call the Function chop to chop the tree down. 

17. From the Logic Toolbox drawer, drag an If Then Else block into the Function search block 

18. In the If Then Else block, click the plus sign (+) two times to create two additional Else if 

clauses 

 

 

19. From the Logic Toolbox drawer, drag 3 equals Comparison blocks into each of the If, and 

Else if slots (remember, you can also right-click on a block and select Duplicate) 



 

 

 

 

Let’s first see if there is a block of wood to the left of the Agent. 

20. From the Agent Toolbox drawer, drag an Agent inspect block into the first slot of the Equals 

comparison block in the first If clause 

21. In the Agent inspect block, use the second drop-down menu to select ‘left’ as the direction 

to look 

22. From the Blocks Toolbox drawer, drag out a Block block and drop into the second slot of the 

Equals comparison block 

23. In the Block block, use the drop-down menu to select an Oak Wood block 

 

 

If we do find some wood to the left of the Agent, then we want to turn the Agent left and call 

our Chop function to chop down the tree, then turn the Agent back around to face forward 

again. 

24. From the Agent Toolbox drawer, drag an Agent turn block under the If Then clause 

25. From the Functions Toolbox drawer, drag a Call function chop block under the Agent turn 

block 

26. From the Agent Toolbox drawer, drag an Agent turn block under the Call function chop 

block 

27. In the Agent turn block, use the drop-down menu to select the direction as ‘right’ 



 

 

 

 

Now, let’s check for wood to the front of our Agent.  In this case, we don’t need to turn the 

Agent. 

28. From the Agent Toolbox drawer, drag an Agent inspect block into the first slot of the Equals 

comparison block in the first Else if clause 

29. From the Blocks Toolbox drawer, drag out a Block block and drop into the second slot of the 

Equals comparison block 

30. In the Block block, use the drop-down menu to select an Oak Wood block 

31. From the Functions Toolbox drawer, drag a Call function chop block under the first Else if 

clause 

 

 

Finally, let’s see if there is a block of wood to the right of the Agent. 

32. From the Agent Toolbox drawer, drag an Agent inspect block into the first slot of the Equals 

comparison block in the second Else If clause 

33. In the Agent inspect block, use the second drop-down menu to select ‘right’ as the direction 

to look 



 

 

34. From the Blocks Toolbox drawer, drag out a Block block and drop into the second slot of the 

Equals comparison block 

35. In the Block block, use the drop-down menu to select an Oak Wood block 

36. From the Agent Toolbox drawer, drag an Agent turn block under the Else if clause 

37. In the Agent turn block, use the drop-down menu to select ‘right’ as the direction to turn 

38. From the Functions Toolbox drawer, drag a Call function chop block under the Agent turn 

block 

39. From the Agent Toolbox drawer, drag an Agent turn block under the Call function chop 

block 

If there is no wood to the left, forward, or right of the Agent, then we do nothing.  So the last 

Else clause will be empty. 

 

 

Now, let’s focus on the Follow function to make our Agent move along the ground following the 

terrain.  In order to keep our Agent searching at ground level, we’ll need to move the Agent up 

if it detects a block in front of it and move the Agent down if it detects no block below it.  

40. From the Agent Toolbox drawer, drag an Agent move block into the Function follow 

41. From the Logic Toolbox drawer, drag an If Then Else block under the Agent move block 

42. In the If Then Else block, click the plus sign (+) to create an Else if clause 



 

 

 

 

43. From the Logic Toolbox drawer, drag an Equals (=) comparison block into the If clause 

replacing ‘true’ 

44. From the Agent Toolbox drawer, drag an Agent inspect block into the first slot of the Equals 

comparison block 

45. From the Blocks Toolbox drawer, drag a Block block into the second slot of the Equals 

comparison block 

 

If the block in front of the Agent is a grass block, then we need to move the Agent up.  But we 

also need to make sure there’s nothing blocking the Agent from moving up (like leaves). 

46. From the Agent Toolbox drawer, drag an Agent destroy block into the If Then clause 

47. In the Agent destroy block, use the drop-down menu to select ‘up’ as the direction 

48. From the Agent Toolbox drawer, drag an Agent move block under the Agent destroy block 

49. In the Agent move block, use the drop-down menu to select ‘up’ as the direction 



 

 

 

 

Now, let’s take care of the case where there is a dip in the ground.  If the Agent doesn’t detect a 

block beneath her, then we’ll need to move the Agent down.   

50. From the Logic Toolbox drawer, drag a Not block into the Else If clause 

51. From the Agent Toolbox drawer, drag an Agent detect block into the Not block 

52. In the Agent detect block, use the second drop-down menu to select ‘down’ as the direction 

This essentially means that the Agent does NOT detect a block below her. 

53. From the Agent Toolbox drawer, drag an Agent move block under the Else If clause 

54. In the Agent move block, use the drop-down menu to select ‘down’ as the direction 

 

The Follow function will move the Agent forward and check if there is a block in front of it  if 

there is, the Agent will move up.  If there isn’t a block in front, it will check if there is a block 

below it  if there is not, the Agent will move down.  If there isn’t a block in front, and there is a 

block below it, then it won’t do anything. 

 

 

For the final Turn function, we need the Agent to turn around at the end of each row.  But she 

needs to turn alternately left and then right at the end of each row. 



 

 

 

 

What is the best way to ensure the Agent alternates its turns?   

Let’s create a boolean variable to keep track of which direction to turn.  Recall from the Variables 

Lesson, a Boolean variable has only two possible values: True, and False.  We’ll use True to 

denote a Right turn, and False to represent a Left turn.  After we make our turn, we’ll change the 

boolean variable to its opposite value using the Not block.  

55. In the Variables Toolbox drawer, click on the ‘Make a Variable’ button 

56. Name this variable ‘flipturn’ and click Ok 

57. From the Variables Toolbox drawer, drag a Set block under the On chat command 

“runchopper” 

58. In the Set block, use the drop-down menu to select the ‘flipturn’ variable 

59. From the Logic Toolbox drawer, drag a False block into the Set block slot replacing 0

 

 

60. From the Logic Toolbox drawer, drag an If Then Else block into the Function turn block 

61. From the Variables Toolbox drawer, drag the flipturn variable block into the If clause 

replacing ‘true’ 

62. From the Agent Toolbox drawer, drag an Agent turn block under the If Then clause 

63. In the Agent turn block, use the drop-down menu to select ‘right’ as the direction 

64. From the Agent Toolbox drawer, drag an Agent move block under the Agent turn block 



 

 

65. Type ‘3’ into the Agent move block slot to move forward 3 blocks 

66. From the Agent Toolbox drawer, drag another Agent turn block under the Agent move block 

67. In the Agent turn block, use the drop-down menu to select ‘right’ as the direction 

 

 

68. From the Agent Toolbox drawer, drag an Agent turn block under the Else clause 

69. From the Agent Toolbox drawer, drag an Agent move block under the Agent turn block 

70. Type ‘3’ into the Agent move block slot to move forward 3 blocks 

71. From the Agent Toolbox drawer, drag another Agent turn block under the Agent move block 

72. Lastly, from the Variables Toolbox drawer, drag a Set block after the If Then Else clause in the 

Function turn 

73. In the Set block, use the drop-down menu to select the flipturn variable 

74. From the Logic Toolbox drawer, drag a Not block into the Set block slot replacing 0 

75. From the Variables Toolbox drawer, drag a flipturn variable block into the Not block 

 

If the flipturn variable is True, then the Agent will turn right 90 move forward 3 blocks then turn 

right 90.  If the flipturn variable is False, then the Agent will turn left 90 move forward 3 blocks 

then turn left 90.  Then we will set the value of the flipturn variable to the opposite of what it 

currently is. 



 

 

 

 

Now that we have all our functions built, let’s bring it all together.  For each step, we want our 

Agent to Search for trees, and Follow the ground terrain.  And remember, that we set our num1 

parameter to be the number of blocks in each row. 

76. From the Loops Toolbox drawer, drag a Repeat block into the On chat command 

“runchopper” under the Set block 

77. From the Variables Toolbox drawer, drag the num1 variable block into the Repeat block 

replacing ‘4’ 

78. From the Functions Toolbox drawer, drag the Call function search, and the Call function 

follow blocks under the Repeat loop 

 

 

Now, at the end of each row, we want to turn our Agent around.  Let’s imagine we have called 

“search 25” which should search a 25 x 25 block area.  But on one pass we are checking three 



 

 

blocks at a time.  So we can divide 25 by 3 and only make that many passes to cover the entire 

area.  If we express that in terms of num1, we have num1 divided by 3, which represents the 

outer loop. 

79. From the Loops Toolbox drawer, drag another Repeat loop, and place it around the outside 

of the existing Repeat loop in the On chat command “runchopper”.  Make sure the Set block 

is still outside the Repeat loop. 

80. From the Math Toolbox drawer, drag a Division () block into the Repeat loop replacing ‘4’ 

81. From the Variables Toolbox drawer, drag the num1 variable block into the first slot of the 

Division block replacing ‘0’ 

82. In the Division block, type ‘3’ in the second slot 

83. From the Functions Toolbox drawer, drag a Call function turn block into the outer Repeat 

loop after the inner Repeat loop 

 

 

Optional Extensions 

● Notice that the Follow function will only work on grass blocks, and only for dips and rises 

1 block high.  Modify the code to work for both grass and dirt blocks, and for dips and 

rises in the terrain more than 1 block high or low. 

● Modify the code to work on 2 x 2 trees such as giant jungle trees and dark oak trees. 

● Modify the code to work on acacia trees, which have a diagonal trunk. 

● Modify the code to work on tree branches. 

● If there are multiple trees around the Agent, the Agent will only chop down one of the 

trees – in the order of left, forward, right.  Find a way to search and chop down all trees 

around the Agent. 

 

Your final program may look like the following: 



 

 

 

JavaScript: 

let item = 0 

let flipturn = false 

player.onChat("runchopper", function (num1) { 

    flipturn = false 

    for (let i = 0; i < num1 / 3; i++) { 

        for (let i = 0; i < num1; i++) { 

            search() 

            follow() 

        } 

        turn() 

    } 

}) 

player.onChat("tp", function () { 

    agent.teleportToPlayer() 



 

 

}) 

function chop() { 

    item = 0 

    while (agent.detect(AgentDetection.Block, 

SixDirection.Forward)) { 

        item += 1 

        agent.destroy(SixDirection.Up) 

        agent.move(SixDirection.Up, 1) 

    } 

    for (let i = 0; i < item; i++) { 

        agent.move(SixDirection.Down, 1) 

        agent.destroy(SixDirection.Forward) 

    } 

    agent.collectAll() 

} 

player.onChat("rt", function () { 

    agent.turn(TurnDirection.Right) 

}) 

function turn() { 

    if (flipturn) { 

        agent.turn(TurnDirection.Right) 

        agent.move(SixDirection.Forward, 3) 

        agent.turn(TurnDirection.Right) 

    } else { 

        agent.turn(TurnDirection.Left) 

        agent.move(SixDirection.Forward, 3) 

        agent.turn(TurnDirection.Left) 

    } 

    flipturn = !(flipturn) 

} 

function search() { 



 

 

    if (agent.inspect(AgentInspection.Block, 

SixDirection.Left) == blocks.block(Block.LogOak)) { 

        agent.turn(TurnDirection.Left) 

        chop() 

        agent.turn(TurnDirection.Right) 

    } else if (agent.inspect(AgentInspection.Block, 

SixDirection.Forward) == blocks.block(Block.LogOak)) { 

        chop() 

    } else if (agent.inspect(AgentInspection.Block, 

SixDirection.Right) == blocks.block(Block.LogOak)) { 

        agent.turn(TurnDirection.Right) 

        chop() 

        agent.turn(TurnDirection.Left) 

    } else { 

         

    } 

} 

function follow() { 

    agent.move(SixDirection.Forward, 1) 

    if (agent.inspect(AgentInspection.Block, 

SixDirection.Forward) == blocks.block(Block.Grass)) { 

        agent.destroy(SixDirection.Up) 

        agent.move(SixDirection.Up, 1) 

    } else if (!(agent.detect(AgentDetection.Block, 

SixDirection.Down))) { 

        agent.move(SixDirection.Down, 1) 

    } else { 

         

    } 

} 
 

Shared Project: https://makecode.com/_e0h6sHUx1XWj  

https://makecode.com/_e0h6sHUx1XWj


 

 

 

Independent Project 

In this chapter, we learned how organizing blocks of code into separate functions makes your 

code more readable and saves space.  Functions generally contain sections of code that go 

together logically and accomplish one thing. The function’s name usually tells you what it does, 

and it’s generally a verb. Functions can call other functions. Although functions in MakeCode do 

not accept parameters, you can use an On chat command block to pass in a parameter, and 

then update the value of an existing variable that any function can access. 

 

Now it’s your turn to practice using functions as you build something in Minecraft.  One of the 

first things to do in Minecraft is build yourself a house.  Your house can be decorated in 

different kinds of wood, use big windows to let in lots of natural light, or be dark and dungeony 

with traps to catch unwary visitors. It could have tall castle-like turrets, or go several levels 

underground and blend in with the natural landscape. You might also use the land around you 

to grow carrots and wheat to feed yourself and the animals around you. Your house, and the 

grounds around it, are a chance for you to express yourself through creatively building. 

MakeCode can help you direct the Agent to build for you, so that your house also becomes an 

expression of your growing ability to code! 

 

For this independent project, build your dream house in Minecraft, or build a replica of an actual 

building.  Either way, use functions to automate creating as many different sections of the house 

as possible. You might start with creating a floor command that creates a floor by filling blocks 

in a square area at your feet. Or, you might have a carpeting Agent that creates long carpet 

runners that run the length of your house. How about a Builder that can create a farm for you, 

automatically? 

 

Come up with something original that meets the following criteria: 

• Creates, or helps to create, a building, temple, monument, or other piece of architecture 

in Minecraft 

• At least three separate and distinct functions 

• Descriptive names that represent what each function does 

 

Some ideas for functions: 

● Create a carpet 

● Create the walls of a room 

● Create a decorative fountain 

● Create a castle turret 

● Level an area of terrain so you have a flat place to build 



 

 

● Create a swimming pool 

 

Minecraft Diary 

• Compose a diary entry addressing the following: 

• What did you decide to build? Why? 

• Describe each of your three functions and what each of them does 

• What kinds of building tasks did you decide needed to be done by hand? Why? 

• Include at least one screenshot of your finished building or piece of architecture 

• Share your project to the web and include the URL here 

 

NOTE: If you decided to improve one of this lesson’s activities, please talk about the new code 

you wrote in addition to what was already provided in the lesson. 

  

Assessment 

 1 2 3 4 

Diary Minecraft 

Diary entry is 

missing 4 or 

more of the 

required 

prompts. 

Minecraft 

Diary entry is 

missing 2 or 

3 of the 

required 

prompts. 

Minecraft Diary 

entry is missing 

1 of the 

required 

prompts. 

Minecraft Diary 

addresses all 

prompts. 

Project Project is 

largely 

ineffective 

and/or 

inefficient. 

Project is 

missing 2 of 

the required 

elements or 

is somewhat 

ineffective 

and/or 

inefficient. 

Project is 

missing 1 of the 

required 

elements or is 

mostly effective 

and efficient. 

Project 

addresses all 

required 

elements 

effectively and 

efficiently. 



 

 

Functions No functions 

logically 

separate nor 

appropriatel

y named. 

One function  

logically 

separate and 

appropriatel

y named. 

Two separate 

functions, 

logically 

separate and 

appropriately 

named. 

At least three 

separate 

functions, 

logically 

separate and 

appropriately 

named. 

 

CSTA Standards 

• 2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 

implementation, and review of programs. 

• 2-AP-14 Create procedures with parameters to organize code and make it easier to 

reuse. 

• 3A-CS-01 Explain how abstractions hide the underlying implementation details of 

computing systems embedded in everyday objects. 

• 3A-AP-13 Create prototypes that use algorithms to solve computational problems by 

leveraging prior student knowledge and personal interests. 


